# Gallons and Gallons of Pennies

Sometimes, “real-world” problems just go ahead and write themselves. And I say take advantage. Why be creative with the actual world can do the heavy lifting for you, right?

This floated across my Facebook feed. Pretty sure you’ll see where I’ve made some edits to the original texts.

Sequels could potentially include:

If Ortha wanted to exchange them for quarters, how many 5-gallon jugs would she need? You could do the same with nickels or dimes.

What would be the mass of each penny-filled jug?

What do you think? What other questions could come off this wonderful set up?

So, during my recent internet travels I came across this tasty picture.

Oh! The math we could do with this!

What questions come to your mind when you see this? I can think of a couple.

Which stack has the second-highest value? Which stack has the lowest-value? (Start with predicting since those are essentially counting by 5s, 10s, and 25s questions.)

Suppose you had three different stacks of dimes and then set them beside three stacks of nickels of equal value. Would there be a consistent height difference? Would the nickels proportionally taller? Would there be no relationship at all?

What questions do you have? What do you think you could do with this? What do you think your students could do with this?

# Kids, I’ll tell you why you need math…

So I was at Kroger and I was thirsty.

I went to the cooler to pick out a 20 oz. Coke. \$1.69. Reasonable. About what you’ll pay most places, at least around these parts.

But I had some more shopping to do. So, I kept walking. Gathering the items on my list.

Then I saw some 2-liter Cokes. (Remind me. Which is a bigger amount of Coke? 2 Liters? or 20 ounces?)

The 2-Liter Coke was priced at “2/\$3.00”. (Which, I’m pretty sure is less than \$1.69.)

(Oh! And you don’t have to buy 2 to get that price. Kroger is awesome like that.)

I get pricing a little bit. I worked concessions at a college football stadium for a while (true story, by the way). I know the shtick. It’s upselling.

“For an extra quarter, you get almost double the pop!”

But this isn’t like that.

You have to buy 4 twenty-ouncers to fill a 2-liter. 4! You include the 10-cent bottle deposit here in the great state of Michigan, and that’s over \$7.00!

2-Liter? \$1.50

This isn’t even close.

Kids, THAT’S why you learn math.

# Show me the money… or something else useful…

It’s not all about the money…
photo credit: Flickr user “401(k) 2013” – used under Creative Commons

In Sir Ken Robinson’s (@SirKenRobinson) book Out of Our Minds, he describes an economic model for our education system that is grounded in Enlightenment era philosophy.

According to Robinson, The Enlightenment is responsible for the labeling of topics as “academic.” At the risk of oversimplifying it, things that can be empirically supported are academic and things that cannot are non-academic.

For example, imagine a sunny day. According to our Enlightenment-conditioned minds, we could talk about “academic” things like the convection caused by the warming earth, the refraction causing the sky to appear blue, the air pressure causing the gentle breeze or the photosynthesis making the grass grow.

We could also talk about a lot of supposedly “non-academic” things like how beautiful the deep blue of the sky is, the lift in our spirits that comes from the sunshine, or the memories of when we were kids in the summertime. (Of course, we could try to make these academic by talking about the sunshine releasing hormones that effect the brain which lifts our spirits, or something like that.)

We’ve also labeled people as academic and non-academic. You see, anyone can feel the warmth of a sunny day, but only the smart, academic kids can understand and discuss heat transfers due to radiation from the sun, right?

And those are the smart kids who do well in math class. And those are the smart kids who get good jobs. By good jobs, we mean jobs that pay a lot of money. And if, you can make yourself academic, you can get a good job that pays a lot of money. You’ll be a smart person, too!

This message has created websites like this or this .The message: The good jobs need smart people. Math is the key to being (or looking) smart. Be smart and get paid well for it.

This message has understandably fostered a response in websites like this, which exist to assure kids that they are able to make money without the mathematics.

But wait, wait… WAIT! Why are we connecting math class to money? Does my “useless” math class only exist to get people high-paying jobs? Surely their must be a REAL reason that my classroom is full five times every day. What about people who don’t want one of those smart, mathy jobs that pay well? Equating math to money excludes significant chunks of students. It excludes future homemakers, military personnel, farmers, people who intend to follow into the family business, or people whose future goals include jobs that they KNOW aren’t going to pay well (teachers, artists, musicians, trade laborers, to name a few). To these folks, a math class that exists to get them paid well truly is useless.

Have we convinced these people they’re dumb because my math class is useless on those terms?

The worst part is that “useless” math classes (like the ones that I teach) are actually useful to all of those people. Math is more than a future paycheck. It is more than getting labeled smart or dumb. It is more than a key to some future door that you won’t appreciate now, but will be so thankful for later.

Maybe my “useless” math class can be for them. All of them. To use right now. To learn how to solve problems. To develop a linear sense of logic. To practice the art of questioning, of guessing well, and of learning to check an answer. To increase numeracy. To learn to struggle and to be patient. If my math class can do these things, then maybe my “useless” math class isn’t actually so useless after all.