# The Beauty of Geometry

Every now and again, I take the opportunity to simply opine on the beauty of geometry. Math gets a bad rap because of it reputation of being cold, lifeless, functional and academic. (Some folks aren’t helping this by proclaiming that the arts are what we do to enjoy school and math is what we study to get paid later on in life.)

Don’t get me wrong, there certainly are academic ways of discussing art, music, iconography, fashion, design. There’s technique and vocab to all of these areas. Students of these disciplines are still students who must study, but their exploration isn’t saddled with the atmosphere that math is. In math, it is often believed, the box is set; the boundaries drawn. The math frontier is closed. There is no need for exploration when there is nothing to explore.

I’ve always felt like geometry has the capacity to challenge those notions. Kolams, quilts and origami help students understand the aesthetic value of straight lines, precise measurements, perfect circles and right angles. Sometimes, you have to build them to complete your understanding of them. That process alone can bring with it its own supply of feedback. When you are trying to create something visually appealing, often times, the eyeball becomes the expert in the room, not the teacher. Attention-to-detail and technique become valuable without encouragement.

At a recent professional learning opportunity, I was given some time to play with KEVA planks. So I did. The planks are all congruent rectangular prisms. So I placed one on the table. Then I placed a second on with a slight rotation (the diagonal intersection points were designed to sit right on top of each other, but the counter clockwise rotation was determined by the next block being placed so that the vertices were placed on the preceding blocks’ short-segment midpoints. It ended up being about 10 degrees.)

That all sounds pretty mathy (and probably somewhat unclear since I’ve never had to verbalize the process before). But the resulting tower is pretty cool-lookin’ (at least I think.) I simply love when objects with straight lines and right angles are arranged to look like curves. This can happen in algebra as well. As a teacher, of course I don’t know if my students will share my fascination, but fascination isn’t the goal. It’s tough to measure and, besides that, it’s fickle.

I’d encourage you to look for opportunities to change the cold, academic atmosphere surrounding the math. How can we warm this wonderful subject up? We used to take advantage of those tricky days right before a long break and do art projects. Thanksgiving Origami, or build a Christmas (or holiday… or wintertime) scene using nothing but triangles.

What ideas do you have?