My more recent endeavors have moved me away from exclusively math and allowed me to enter into the world of literacy, particularly elementary literacy. (Math teachers out there, if you haven’t gotten a chance to sit and participate in a conversation among elementary folks talking about kids learning to read, the essential components of curricula and classroom activities, the different types of assessment and support for struggling learners, etc. then do it. Such interesting conversations…)

But my math background led me to look at the new literacy experiences I’ve been having through the lens of the math classroom. Specifically, what are the elements of literacy education in a problem like this:

What math content knowledge is this problem asking students to use? Volume of cylinders, volume of rectangular prisms, and simple probability.

But we need to keep in mind that the ability to read is a significant skill to being able to apply math to this problem. Especially when you consider that the typical high school student probably doesn’t read quite as well as we’d like them to. I want to be clear that I’m not saying that this is an excuse for us to eliminate reading as a way to accommodate this potential weakness in our students, but it is important that we recognize that we are asking students to exercise that skill when solving this problem.

When we are asking our students to read as part of a math experience, we should do so deliberately. There are times when one of our stated learning outcomes is helping students learn to read math. There is a lot of value in that skill. There are also times when we are much more interested in helping the students set-up and solve math problems in ways that may not require as much reading.

This requires us to be strategic about what we are expecting our students to be able to do by the end of a lesson. Consider the math problem from earlier in the post. Literacy doesn’t have to be a barrier to that math content.

Andrew Stadel provides an example of how volume of multiple solids can be integrated into a math problem in video form.

Dan Meyer integrates a fairly similar set of content in a much different (and more delicious) scenario.

Using video in your class is one way to provide access to a math problem without having student having to tackle the reading part, which can be a pretty significant barrier to some students. In the past, I certainly haven’t been nearly conscious enough of the literacy demands I was putting on the students when I asked them to explore math content. Here’s a perfect example of a handout from my geometry course. How many students would benefit from a video introduction to this handout? (Especially when you consider how many students aren’t real strong using a protractor…)

It just all goes back to us, as educators, having a clear vision for what we want our students to learn by the end of their time with us and being willing to do what it takes to help them get there.

The quoted problem should be the reason for all copies of the book to be destroyed. Artificial is a kind word for it. if one is going to dress up mathematical (arithmetical in this case) problems then some attempt at realism and simplicity should be made. The cake is round and 3 inches thick or high. I had to laugh about keka eating kake. Who cuts an oblong piece from a round cake anyway, and it implies but doesn’t say that the base of the block is the base of the cake, so the problem doesn’t have a solution. Solution to the nearest tenth? Tenth of what????? I could go on………..

I am a cheerleader for making sure questions are worded in such a way that the child can truly showcase what is being learned. The way a question or problem is worded is definitely a barrier. My children and I often identify what a problem expects them to know – and we address that separately from the actual “math.”